
1

To ignite innovation, inspire transformation, and
implement digital solutions for a healthier nation.”

Test Automation

Data Science

DevSecOps Delivery

Contact Center Operations

Building configuration-controlled data
harmonization service building blocks using

commodity code.

Presentation to CDC
March 28, 2023

SPARKSOFT CORPORATION 2

Meet the Speaker

Mr. Lieske possesses over 20 years of experience in designing and building some of the world's largest
analytic platforms, including an extensive and varied 12-year commitment to CMS Integrated Data
Warehouse where he acted as program manager and solution architect. He is an industry expert for his
knowledge of Medicare reimbursement principles and has fostered trust and rapport within the CMS
community by understanding driving factors and pressures. He has accrued more than 14 years of
experience managing all aspects of the SDLC with a specialization in fraud analytic system architecture
and administration.

Sparksoft Corporation is a CMMI and ISO certified 8(a), Women-Owned Small Business (WOSB) with a proven
record of successfully implementing modern digital health solutions for more than a dozen Federal, State, and
commercial customers since 2004.

DIRK LIESKE (Sparksoft)
Director of SparkLabs & Sr. Solutions Architect

Configuration-controlled building blocks typically:
• Result in some data redundancy (Raw plus harmonized)
• Require additional compute and processing (Building blocks often run tasks independently)
• Result in physical data model design tradeoffs (Share traits of schema-on-read design

patterns)

SPARKSOFT CORPORATION 3

Design Considerations, Assumptions and Tradeoffs

There is no such thing as a one-size fits all design pattern:

For example:

• Some systems could need continual, instant real-time updates where
every second counts.

• Some systems could need to process and store petabytes of data,
systems where storage costs far exceed human costs.

Decomposing ETL into Building Blocks:
• Design building blocks users understand
• Identify common repeating processes
• Identify and avoid complex one-off logic
• Leverage what is known (Metadata) or what

can be discovered
• Data Layouts (Headers, Tags)
• Layout Changes
• Data Deliveries (File Receipt)
• Existing Structures (Tables)
• System Status

• Design for changes in delivery
• Data Layout Changes
• Delivery Cadence
• Delivery Volume

• Design for human input
• Thresholds
• Tuning
• Data Element Definitions
• Constraints

SPARKSOFT CORPORATION 4

Defining a Building Block

1. Always capture what is received
• Use filters can protect end users

• Archive after the fact
2. Record all the available metadata

• Dates, Sizes, Users, Processes Etc.
3. Manufacture keys to link everything together

• Timestamps work well

Pushed / Delivered Data Assets:
• Users can understand a building block called

“Collect and store provided data”. Analytic
users need to understand and trust your
building blocks.

• Work with source systems to ensure some
type of self description (headers, Layouts,
Tags etc.)

Pulled / Collected Data Assets
• Generate layouts to ensure self description

(Headers, Layouts, Tags etc.)

SPARKSOFT CORPORATION 5

Defining a Building Block

1. Data layouts (self descriptions) will allow your
extraction processes to generate landing data

manipulation statements.
2. Successful building blocks simplify development

and operations while building trust and
understanding.

• Define a single building block for two-
dimensional data assets. (Tables, Delimited
and Fixed Length Tables etc.)

• Define a second building block to address
Recursive and hierarchical data assets. (XML,
Cobol etc.)

• Define building blocks to create, maintain and
load target structures.

• For hierarchical data assets either:
• Store data as a CLOB (Character Large

Objects)
• Pre-process/spite data into separate files

and then use virtual logic to re-join the
data

SPARKSOFT CORPORATION 6

Defining a Building Block

1. Always capture what is received
• Files deliver text (Not dates and numbers etc.)

2. Layouts change over time
• Allow targets to grow automatically
3. Capture all available metadata

• File sizes, row counts, etc.

Transformations can resolve many problems:
• Data types
• Duplicate records
• Invalid keys
• Lists of values
• Apply synonyms for standardization
• Contiguous non-overlapping dates
• Flagging quality issues

Transformations can be organized into:
• Field Level Transformations
• Row Level Transformations
• Data set / single table transformations
• Multi-table transformations

SPARKSOFT CORPORATION 7

Defining a Building Block

Transformation building blocks should be:
Simple to understand

Add columns with improved values
Add columns that can be used as filters

SPARKSOFT CORPORATION 8

Designing a Building Block

C1 C2 C3 C4
A
B
C
C

Tbl
Tblx

Col
C1

Key

Tblx C2
Tblx C3
Tblx C4 Y

Key

1
2

Settings Table

Tblx Table

1.0
Evaluate

Filters

Check
Exists

No

0.0
Human

Set Parameters

2.0
Generate

Alter Code

2.1
Run

Alter Code

3.0
Generate

Counter Update

3.1
Run

Counter Update

Always

1.0 Evaluate Filters

1.1
Run

Logic

1.2
Read

Parameters

1.3
Generate

Code

1.4
Run

Code

1.5
Track

Results

A. Decompose the overall pipeline into functional parts. (Load data, Assign Data Types, Identify Duplicates etc.)
B. Further decompose each functional part into specific modules looking for modules that can be further reused.

C. Define common, central repositories to manage configurations, log messages, metadata and errors.

SPARKSOFT CORPORATION 9

Building a Building Block (Example Shown Using SQL)

Step 1: Define Logic Objective (For example logic to convert inbound text to harmonized numbers)
UPDATE MY_DATABASE.MY_SCHEMA.MY_TABLE
SET MY_NEW_NUM_CLMN = TRY_TO_NUMBER(REGEXP_REPLACE(MY_ORIG_NUM_CLMN,'[^-0-9]',‘’));

Step 2: Identify the variables in your Query: (Typically Database, Tables and Columns)
UPDATE MY_DATABASE.MY_SCHEMA.MY_TABLE
SET MY_NEW_NUM_CLMN = TRY_TO_NUMBER(REGEXP_REPLACE(MY_ORIG_NUM_CLMN,'[^-0-9]',‘’));

Step 3: Using Metadata select results with the necessary components
SELECT c.TABLE_CATALOG
, c.TABLE_SCHEMA
, c.TABLE_NAME
, c.COLUMN_NAME
FROM MY_DATABASE.INFORMATION_SCHEMA.COLUMNS c
WHERE c.TABLE_NAME = ‘MY_TABLE’;

Step 4: Build logic around your selected rows
SELECT ’UPDATE ’||MY_DATABASE||’.’||MY_SCHEMA||’.’||MY_TABLE||’||
’SET ’||MY_NEW_NUM_CLMN||’ = TRY_TO_NUMBER(REGEXP_REPLACE(’||MY_ORIG_NUM_CLMN||’,'[^-0-9]',‘’));’
FROM MY_DATABASE.INFORMATION_SCHEMA.COLUMNS c
WHERE c.TABLE_NAME = ‘MY_TABLE’;

Step 2: Identify the variables in your Query: (Typically Database, Tables and Columns)
UPDATE MY_DATABASE.MY_SCHEMA.MY_TABLE
SET MY_NEW_NUM_CLMN = TRY_TO_NUMBER(REGEXP_REPLACE(MY_ORIG_NUM_CLMN,'[^-0-9]',‘’));

Step 4: Build logic around your selected rows
SELECT ’UPDATE ’||MY_DATABASE||’.’||MY_SCHEMA||’.’||MY_TABLE||’||
’SET ’||MY_NEW_NUM_CLMN||’ = TRY_TO_NUMBER(REGEXP_REPLACE(’||MY_ORIG_NUM_CLMN||’,'[^-0-9]',‘’));’
FROM MY_DATABASE.INFORMATION_SCHEMA.COLUMNS c
WHERE c.TABLE_NAME = ‘MY_TABLE’;

SPARKSOFT CORPORATION 10

Building a Building Block (Example Shown Using SQL) Cont.
Notes: The simple example generates less than ideal output: (1 Update for each column)

UPDATE MY_DATABASE.MY_SCHEMA.MY_TABLE
SET MY_NEW_NUM_CLMN1 = TRY_TO_NUMBER(REGEXP_REPLACE(MY_ORIG_NUM_CLMN1,'[^-0-9]',‘’));
UPDATE MY_DATABASE.MY_SCHEMA.MY_TABLE
SET MY_NEW_NUM_CLMN2 = TRY_TO_NUMBER(REGEXP_REPLACE(MY_ORIG_NUM_CLMN2,'[^-0-9]',‘’));

Notes: What you really want is:
UPDATE MY_DATABASE.MY_SCHEMA.MY_TABLE
SET MY_NEW_NUM_CLMN1 = TRY_TO_NUMBER(REGEXP_REPLACE(MY_ORIG_NUM_CLMN1,'[^-0-9]',‘’))
, MY_NEW_NUM_CLMN2 = TRY_TO_NUMBER(REGEXP_REPLACE(MY_ORIG_NUM_CLMN2,'[^-0-9]',‘’))
, MY_NEW_NUM_CLMN3 = TRY_TO_NUMBER(REGEXP_REPLACE(MY_ORIG_NUM_CLMN3,'[^-0-9]',‘’));

Notes: You need to logic for the 1st row and the last row
SELECT CASE WHEN ROW_NUMBER() OVER (PARTITION BY c.TABLE_CATALOG

c.TABLE_SCHEMA
, c.TABLE_NAME

ORDER BY
c.TABLE_CATALOG

, c.TABLE_SCHEMA
, c.TABLE_NAME
, c.COLUMN_NAME) = 1

THEN ’UPDATE ’||MY_DATABASE||’.’||MY_SCHEMA||’.’||MY_TABLE||’||
’SET ’

ELSE ’, ’
END||
MY_NEW_NUM_CLMN||’ = TRY_TO_NUMBER(REGEXP_REPLACE(’||MY_ORIG_NUM_CLMN||’,'[^-0-9]',‘’))’

-- DO SOMETHING SIMILAR to add the ‘;’ at the end
FROM MY_DATABASE.INFORMATION_SCHEMA.COLUMNS c
WHERE c.TABLE_NAME = ‘MY_TABLE’;

CREATE OR REPLACE TABLE MY_DATABASE.MY_SCHEMA.MY_PARM_TBL
(DB_NAME VARCHAR -- The database where the business data is loaded
, SCMA_NAME VARCHAR -- the schema where the business data is loaded
, TBL_NAME VARCHAR -- The original source name typically the file name from the source
, TBL_DESC VARCHAR -- The table description, manually entered
, CLMN_NAME VARCHAR -- The original column name provided by the source
, CLMN_DESC VARCHAR -- The column description, manually entered
, DATA_TYPE VARCHAR -- Defines the desired data type like integer or date etc.
, PRIME_KEY_FLG BOOLEAN -- Each field that is part of the primary key is set to "y"
, IGNOR_PURE_DUP_FLG BOOLEAN -- If set yes then the pure duplicate check will not include
, IN_LIST_NAME VARCHAR -- Concatenates a set of fields into a single new field based on list name
, CLMN_NAME_ALIAS VARCHAR -- Allows users to rename source field names in view
, VIEW_NAME_ALIAS VARCHAR -- A view alias specific to a single table.
, DATE_BAND_KEY VARCHAR -- The key used when banding a specific date
, DATE_FRMT VARCHAR -- Incoming Date Format for specified field
, TIMESTAMP_FRMT VARCHAR -- Incoming TIMESTAMP Format for specified field
, SYN_GRP VARCHAR -- The synonym group text is being edited by
, RULE_LKUP_GRP VARCHAR -- The group that is used to perform a lookup and replace
, QUAL_VALUE_MATCH VARCHAR -- USED TO TURN ON AND OFF QUALITY MEASURE AND TO SPECIFY VALUE TO MEASURE AGAINST
, QUAL_VALUE_LIKE VARCHAR -- USED TO TURN ON AND OFF QUALITY MEASURE AND TO SPECIFY VALUE TO MEASURE AGAINST
, QUAL_MIN_VAL INTEGER -- USED TO TURN ON AND OFF QUALITY MEASURE AND TO SPECIFY VALUE TO MEASURE AGAINST
, QUAL_MAX_VAL INTEGER -- USED TO TURN ON AND OFF QUALITY MEASURE AND TO SPECIFY VALUE TO MEASURE AGAINST
, QUAL_MIN_STRLEN_VAL INTEGER -- USED TO TURN ON AND OFF QUALITY MEASURE AND TO SPECIFY VALUE TO MEASURE AGAINST
, QUAL_MAX_STRLEN_VAL INTEGER -- USED TO TURN ON AND OFF QUALITY MEASURE AND TO SPECIFY VALUE TO MEASURE AGAINST);

Use End User Exposed Configuration Tables to Control You Logic:
• Building Blocks are Human Guided (Configurations need to be set)
• Most operations / Building Blocks will be at the dataset level or the field level

SPARKSOFT CORPORATION 11

Controlling a Building Block

• Each read comes at a cost
• Each write comes at a cost
• Each building block is likely to require a read and a write

SPARKSOFT CORPORATION 12

Performance Considerations

Indexes

Partitions

Compression

Sort Orders

• Some performance structures need to be established at time of creation
(indexes, partitions, sort orders etc.)

• Some systems require lower amounts of performance tuning

• Some systems prefer wide tables (Columnar)

Reads

Writes

Joins

To ignite innovation, inspire
transformation, and
implement digital solutions
for a healthier nation

MISSION:

Thank You

SPARKSOFT CORPORATION 13

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

